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Abstract

A thermodynamic model is developed of the free energy of gas-filled voids formed within cavities on solid surfaces covered by a liquid
Capillary effects are assumed to be the only important contributions to the free energy, and expressions are derived for the free en
system as a function of the void size, the relative surface free energy densities involved, and the geometry of the cavity. The res
model are (1) construction of a stability diagram that maps the most stable void configuration versus the wetting properties of th
solid surfaces involved, and (2) rough estimates of the work required to liberate a void of a given size and position. The model can
qualitative insight into the stability of coating defects on uneven surfaces, and also can be used to prescribe possible surface tre
reducing the work required to remove voids from the system.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The rapid covering of a solid surface by a liquid is
event common to diverse processes in nature, science
gineering, and medicine. Some examples from manufa
ing include processes such as investment casting, ele
plating, cleaning, dip coating, spin coating, painting, scr
printing, and production of powder slurries. In the field
medicine, examples include the flow of liquids into syring
and through intravenous feeding tubes. By any of th
processes, gas may become trapped as isolated pocke
voids, at liquid–solid surfaces. The number and size of
voids that form depend both on the details of the liquid fl
and on the properties of the solid surface, such as its ro
ness and its tendency to be wet by the liquid. In coatin
casting applications, voids that are not removed can resu
defects that compromise the adhesion, electrical prope
surface finish, and durability of the product.

Conditions for the initial formation of a void are esp
cially favorable at reentrant features of a rough surface, s
as pinhole defects in films, pits and scratches formed
grinding, and even intentional cavities formed by a pr

E-mail address: jeffrey.bullard@nist.gov.
0021-9797/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2004.03.054
-

-

or

-

,

photolithographic or stamping procedure. Flow of liquid can
cover such features before the gas can escape, especi
the solid surface is lyophobic. This phenomenon is part
larly prevalent, for example, when electrolytically depo
ing metals into small cavities (≈50 µm diameter) like thos
formed in photoresist masks for patterning electrical circu
For such geometries a commonly observed defect is a
shaped depression in the deposited metal, as illustrat
Fig. 1. These depressions indicate regions of low cur
where a bubble prevented adequate liquid contact.

Fig. 1. Illustration of electroplating defect caused by gas-filled voids trap
in recessed cavities.

http://www.elsevier.com/locate/jcis
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Given the negative impact that gas-filled voids have
many processes, it is desirable to find ways either to pre
their formation or to expedite their removal from the syst
once they have formed. In situations where it is not fe
ble either to modify the way in which liquid is introduced
the surface or to chemically modify the surfaces, the forma
tion of surface voids may be unavoidable. In many of th
systems, voids persist because they are thermodynam
stable. For such systems, voids can be removed only by
plying work, such as mechanicalvibration or impact in their
vicinity.

This paper analyzes systems in which voids may
trapped in low-energy configurations. A thermodynam
model is presented of a gas-filled void at an idealized re
trant surface feature, and themodel is used to calculate th
most stable void configuration (including the possibility
the void being liberated from the surface). The approac
similar to that used by Chatain et al.[1] to analyze the ther
modynamically stable shapes of two-phase systems enc
within a cubic cavity. By calculating the free energy of t
stable configuration relative to that of a liberated void of
same size, the minimum work required to release the vo
predicted. The idealized model has the benefits of being
alytically tractable and of leading to insights that should
qualitatively valid for real systems. In fact, as shown inSec-
tion 3, even the quantitative predictions of the work requi
to remove a void are expected to be good approximat
that can be used to help design procedures for remo
these types of defects.

2. Model description

In this section, the basic model is described in so
detail, including the primary assumptions that are u
throughout. A two-dimensional model simplifies the ma
ematical details, and is therefore used for most of the
culations. However, because differences between we
phenomena in 2-D and 3-D are often significant, a more
stricted 3-D model is also developed later in this section
a check on the 2-D results.

2.1. 2-D model system

The basic 2-D model is shown inFig. 2. It consists of a
chemically homogeneous liquid (denoted as L) partially
ing a reentrant surface feature. The remainder of the cavit
is assumed to be filled with a gas (denoted G). The liq
is assumed to provide a thermal reservoir sufficient to k
the entire system isothermal. Furthermore, the liquid and
ternal atmosphere with which it is in contact are assume
provide a fixed hydrostatic pressure. As long as the pres
remains fixed, it is a good approximation to take the mo
volume of the void to be constant also. The reentrant
face feature is a cavity having widthD and depthh. Typical
dimensions ofD and h are often 10 to 1000 µm in eng
neering applications. For greater generality, and becau
-

d

f

Fig. 2. A schematic of the 2-D void model.

Fig. 3. Different configurations of a void in a surface cavity.

the close resemblance to features found in, for example
lective electrodeposition processes, the base of the c
(denoted B) is assumed to have different wetting prope
than the walls (denoted W). To avoid the complication of
preciable gas solubility or any chemical reactions, the liq
solids, and gas are assumed to be mutually inert.

The free energy of the system clearly should depend
the shape and location of the void within the cavity. T
possible distinct configurations that a void of a specified v
ume1 may adopt are shown inFig. 3along with a name an
one-letter symbol by which each configuration will be d
noted throughout this analysis. In principle, a volume of
could be partitioned into multiple voids of different size
such as one void in each corner or one void at the wall
another at the base. However, as shown inAppendix B, the
only circumstance for the system at hand in which this
happen is that for which the interface between the void
the liquid is convex when viewed from within the void. Su
a condition is possible geometrically only for the corner c
figuration, and so we also consider a configuration, lab
as “2C” in Fig. 3, in which two voids having equal volume
form, one at each corner. By calculating the free energ
each configuration at constant void volume, subject to
geometric constraints, the most stable configuration ma
determined.

1 Strictly speaking, “volume” is really an area in 2-D, but for purpos
of clarity we will continue to refer to space in 2-D as having volume an
interfaces in 2-D as having area.
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Because the gas is assumed to have fixed molar vo
and temperature, the free energy,F , written as a function
of temperature and all other extensive variables, repres
the thermodynamic potential governing equilibrium and sta
bility. We will ignore the presence of body forces arisi
from gravitational,2 electrostatic, or centrifugal fields. F
constant temperature, void volume and molar content,
bulk contributions to the free energy are invariant and m
be subtracted from the true free energy without further
of generality. We denote the four different types of mat
als by single capital letters as follows: B= base, W= wall,
L = liquid, and G= gas. The area of the interface sepa
ing two phasesi andj will then be denoted asAij . With this
notation, the free energy may be written as[2,3]

F = F̃ (ABG,ABL,AWG,AWL,ALG)

=
∫

ABG

γBG dABG +
∫

ABL

γBL dABL

+
∫

AWG

γWG dAWG +
∫

AWL

γWL dAWL

(1)+
∫

ALG

γLG dALG,

where, for example,ABG is the total area of surface separ
ing the base (B) and gas (G), and

γBG ≡
(

∂F̃

∂ABG

)
.

Fig. 2 shows thatABL = D − ABG andAWL = 2h − AWG.
Also, only the differences in free energies of the various c
figurations are relevant. We therefore subtract fromEq. (1)
the constant termsγBLD and 2γWLh, integrate term by term
and normalize byγLG:

Γ ≡ F − γBLD − 2γWLh

γLG

(2)= (gBG − gBL)ABG + (gWG − gWL)AWG + ALG,

wheregij ≡ γij /γLG.
It can be shown, by minimization of free energy[4–6],

that at equilibrium the liquid/gas interface must assum
shape having convex mean curvature.

�P = γLGκ,

that at equilibrium the liquid/gas interface must assum
shape with constant mean curvature. A wide variety of
face shapes with constant mean curvature, so-called min
surfaces, can be embedded in three dimensions. Howev
2-D the only constant-curvature surface possible is an a

2 For large voids, buoyancy forces should be considered because
become increasingly important, relative to capillary effects, as the
face/volume ratio decreases. However, for small voids (≈100 µm effective
diameter), it is an excellent approximation to ignore gravity.
s

l
n

a circle. Furthermore, provided that both the walls and ba
of the cavity are essentially rigid solids, minimization of fr
energy can be shown to require[7] that the geometry satisf
Young’s equation[8],

(3)gBG − gBL = cosφB,

(4)gWG − gWL = cosφW,

whereφB andφW are the thermodynamic contact angles
the base and wall, respectively (seeFig. 2). Therefore, we
may simplifyEq. (2)to

(5)Γ = ABG cosφB + AWG cosφW + ALG.

The constitutive variables for the problem at hand are
void volume,V , and the thermodynamic contact anglesφB
andφW. Therefore we must express, for each configurat
the surface areasAij in Eq. (5)as explicit functions of thes
variables. The mathematics are straightforward but ted
and will not be reproduced here. Briefly, the areas are wr
in Table 1as functions of the interface radius of curvatu
R and thenR(V,φB, φW) is derived using trigonometry an
catalogued inTable 2. An example derivation for the bas
configuration is given inAppendix A.

Comparison of the free energies for various values
the constitutive variables will establish the global equi
rium configurations of the void as well as the relative w
required to liberate the void to the bulk liquid. Howev
in addition to these free energy considerations, each
configuration can exist only within certain geometric co
straints. These constraints are of two types: (1) upper bo
on the linear dimensions of the void, above which the v
impinges on another boundary of the cavity; (2) for the
and 2C configurations, the requirement that the liquid–
interface have constant curvature implies certain inequ
relationships betweenφW andφB. The constraints are cat
logued inAppendix C.

Evaluation of stable void configurations in the 2-D mo
is presented in the Discussion section. But fxfirst, we es
lish a restricted 3-D model that will be useful for comparis
to the 2-D results.

2.2. Three-dimensional model system

For arbitrary values ofφB andφW, a 3-D analog to the
system depicted inFig. 2 is difficult to analyze becaus
of the more complex geometries that must be evaluate
determine the volume and areas of the different interfa
However, the situation simplifies considerably if we assu
thatφW = π/2 (i.e.,γWG = γWL). And because we are inte
ested mainly in identifying qualitative differences betwe
the more artificial 2-D system and the 3-D system, we
accept that restriction for the 3-D model. The void will be
sumed to reside in a tetragonal cavity (i.e., all walls of eq
lengthD butD �= h). Also, because the walls and base are
mutually orthogonal, the condition thatφW = π/2 makes the
problem mathematically identical to that of an axisymme
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Table 1
The area of each type of interface as a function ofR, φW, andφB for each configuration shown inFig. 3

Configuration ABG AWG ALG

Corner (C)
(φW + φB �= 3π/2) R(cosφW + sinφB) R(sinφW + cosφB) R

(3π
2 − φW − φB

)
(φW + φB = 3π/2)

√
2V cosφB

cosφW

√
2V cosφW

cosφB

√
2V

cosφB cosφW

Two-corner (2C)
(φW + φB �= 3π/2) 2R(cosφW + sinφB) 2R(sinφW + cosφB) 2R

(3π
2 − φW − φB

)
(φW + φB = 3π/2)

√
V cosφB
cosφW

√
V cosφW

cosφB

√
V

cosφB cosφW

Wall (W) 0 2R sinφW 2R(π − φW)

Base (B) 2R sinφB 0 2R(π − φB)

Span (S)
V � Vc D 2hp 2R

(
π
2 − φW

)
V > Vc D 2h − D + 2R sinφW 2R(π − φW)

Free (F) 0 0 2πR

For the C and 2C configurations,R → ∞ asφW + φB → 3π/2, so the void assumes the shape of a right
triangle and the areas are functions ofV . For the span configuration,hp is the height above the base of the
triple junction formed at each wall.

Table 2
R as a function ofV , φW andφB for the configurations shown inFig. 3

Configuration R (or hp)

Corner (C)

(φW + φB < 3π/2) R =
√

2V
3π/2+2cosφW cosφB+cosφW sinφW+cosφB sinφB−φW−φB

(φW + φB > 3π/2) R = −
√

2V
3π/2+2cosφW cosφB+cosφW sinφW+cosφB sinφB−φW−φB

(φW + φB = 3π/2) R = ∞
Two-corner (2C)

(φW + φB < 3π/2) R =
√

V
3π/2+2cosφW cosφB+cosφW sinφW+cosφB sinφB−φW−φB

(φW + φB > 3π/2) R = −
√

V
3π/2+2cosφW cosφB+cosφW sinφW+cosφB sinφB−φW−φB

(φW + φB = 3π/2) R = ∞

Wall (W) R =
√

V
π+cosφW sinφW−φW

Base (B) R =
√

V
π+cosφB sinφB−φB

Span (S) R = D
2cosφW

(V � Vc)

R =
√

V −Dh
π−φW+cosφW sinφW

(V > Vc)

hp = V
D

− D

8cos2 φW
(π − 2φW − sin 2φW), limφW→π/2 hp = V

D
(V � Vc)

Free (F) R = √
V/π

The usual convention is adopted here of takingR positive if the surface is convex when viewed from outside
the phase of interest (the void in this model). Forthe special case of a span configuration, the heighthp of the
meniscus above the base determines the value ofAWG.
sit-
s to
ust

ity is

res-

ssi-

ese
base
g

3-
se
er-
sessile drop (void) on a rigid substrate. And for the latter
uation, one may demonstrate, using variational principle
minimize the free energy, that the liquid/gas interface m
assume the shape of a portion of a sphere when grav
neglected.

Using these assumptions, one may readily obtain exp
sions analogous to those inTables 1 and 2for the 3-D model
system. However, two additional configurations are po
ble in 3-D besides those identified already for 2-D. Th
are (1) the void situated along an edge between the
and a wall (denoted EBW) and (2) the void situated alon
the edge between two walls (denoted EWW). The results are
given inTables 3 and 4. The geometric restrictions on the
D void in a tetragonal cavity are virtually identical to tho
for the 2-D system described earlier, and will not be enum
ated here.
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Table 3
The area of each type of interface as a function ofR andφB for each 3-D void configuration possible
in a tetragonal cavity whenφW = π/2

Configuration ABG AWG ALG

Corner (C) π
4 R2 sin2 φB R2(π + cosφB sinφB − φB) π

2 R2(1+ cosφB)

Base/wall edge (EBW) π
2 R2 sin2 φB πR2 − π

2 R2(2φB − sin 2φB) πR2(1+ cosφB)

Wall/wall edge (EWW) 0 πR2 πR2

Wall (W) 0 πR2 2πR2

Base (B) πR2 sin2 φB 0 2πR2(1+ cosφB)

Span (S)
V � Vc D2 4Dhp D2

V > Vc D2 4Dh + πR2 − D2 2πR2

Free (F) 0 0 4πR2

For the span configuration,hp is the height above the base of the triple junction formed at each wall.
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Table 4
R as a function ofV andφB for each type of 3-D configuration possible
a tetragonal cavity whenφW = π/2

Configuration R (or hp)

Corner (C) R = [ 12V
π(1+cosφB)2(2−cosφB)

]1/3

Base/wall edge (EBW) R = [ 3V

2π− π
2 (1−cosφB)2(2+cosφB)

]1/3

Wall/wall edge (EWW) R = [ 3V
π

]1/3

Wall (W) R = [ 3V
2π

]1/3

Base (B) R = [ 3V

π(1+cosφB)2(2−cosφB)

]1/3

Span (S) R = ∞ (V � Vc)

R = [ 3(V −D2h)
2π

]1/3
(V > Vc)

hp = V/D2 (V � Vc)

Free (F) R = [ 3V
4π

]1/3

For the special case of a span configuration, the heighthp of the triple
junctions above the base determines the value ofAWG.

3. Discussion

3.1. Analysis

In two dimensions, specification of the three const
tive variables (V , φW, andφB) and the cavity dimension
D and h is sufficient to determine the thermodynamica
favored void configuration consistent with the geometric
strictions. The information can be catalogued convenie
in a “phase diagram” that maps the ranges of constitu
variables within which a given void configuration is stab
Fig. 4shows four isometric (i.e., constantV/Vc) cuts of such
a diagram, using cavity dimensionsD = h = 100 µm, for
which the total cavity volumeVc = 104 µm2. The stable con
figuration in any region is denoted by a single capital le
as shown inFig. 3. Chatain et al.[1] collect their stability
data using the same principle, although in their paper
employ a different set of constitutive variables.

If the dimensions of the cavity are large compared to
dimensions of the void, then none but the span config
tion are geometrically constrained. Therefore, the stab
diagram shown inFig. 4A, whereV/Vc → 0, is determined
Fig. 4. Isometric cuts of a void stability diagram calculated by
2-D model for D = h = 100 µm (Vc = 104 µm2). (A) V/Vc = 10−3,
(B) V/Vc = 0.02, (C)V/Vc = 0.2, and (D)V/Vc = 2.0.

only by the minimization of the free energy at constant v
ume. The symmetry ofFig. 4A therefore is expected be
cause, from the perspective of the void, the cavity is
sentially a single corner with base and wall extending a
from it indefinitely. When the cavity dimensions are mo
comparable to the void dimensions, the base, wall, or corn
configurations can become geometrically impossible, e
cially at larger values ofφW or φB for which the void be-
comes extremely anisometric. This is reflected inFigs. 4B–
4D. The broken symmetry inFigs. 4B and 4Cis also due
partially to the fact that the cavity itself is asymmetric, be
open at the top but bounded on the bottom and sides.

To be more quantitative about the changes that occ
increasing void volumes, notice inFig. 4B that regions of
stability for the base and wall configurations appear in n
row bands for whichφW or φB exceed critical valuesφc

W
or φc

B, respectively. Bothφc
W andφc

B decrease from a max
imum value ofπ as the void volume increases. To see w
this is, take as an example the base configuration. A valu
φB = π means that a void in contact with the base will spr
indefinitely, but because the walls limit the extent of spread
ing, the base configuration is geometrically impossible
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φB = π at any finite volume. For very small void volume
V/Vc < 0.01 the value of the critical angles are sufficien
close toπ that the new stability regions, although prese
are not visually discernible inFig. 4A.

We can approximate these critical angles as a functio
volume. For example, by explicitly writing the constraint
Eq. (C.13), with R taken fromTable 2, the value ofφc

B will
be that for which

(6)4V sin2 φc
B = D2(π + cosφc

B sinφc
B − φc

B

)
.

If we useα = π − φc
B as a variable, then forα → 0 we can

expandEq. (6)to second order and solve to find

(7)φc
B ≈ π − 8V

D2

(
π − φc

B � 1
)
.

Another change in the stability diagrams at larger void v
umes is the appearance of a region near the point (φW = π/2,
φB = π ) in which a span configuration is favored. Aga
whenφB → π a base configuration is not possible beca
the void would spread indefinitely, leading to a span c
figuration. However, the span configuration is only possi
at small void volumes, if the meniscus is a flat line in 2
(a plane in 3-D). If the meniscus is convex or concave, t
it is geometrically impossible to enclose a sufficiently sm
volume under such a meniscus that spans the cavity. B
long as the meniscus is flat or nearly so (i.e.,φW ≈ π/2) then
any void volume can be contained by adjusting the heigh
the meniscus above the base surface. The range ofφW over
which the span configuration is favored, whenφB = π , can
be estimated by following the same procedure as that leadi
to Eq. (7). The result is written compactly as

(8)

∣∣∣∣π2 − φc
W

∣∣∣∣ ≈ 8V

D2

(
φB = π, |π/2− φW| � 1

)
.

As shown in the upper right corner ofFig. 4B, the C and 2C
configurations have equal free energies along the bounda
defined byφW + φB = 3π/2. It is exactly this condition for
which the liquid–gas interface has zero curvature. As sh
in Appendix B, when the liquid–gas interface has zero c
vature, the free energy ofN voids, having total volumeV ,
in corner configurations is independent ofN and there is
no driving force either for coarsening of the voids or
anticoarsening. This result agrees with previous result
Chatain et al.[1].

For the 3-D model,Fig. 5shows plots ofΓ − Γfree vsφB
for two different void volumes. The new “edge” configur
tions available in 3-D are in no case the most stable. W
the exception of these two configurations, we can dire
compare the results ofFig. 5 to the 2-D model. To make
that comparison as meaningful as possible, we first norma
ize the free energy of each configuration, in 2-D and 3-D
the free energy of a free void. The result is a set of dim
sionless functionsαi2 andαi3 in two and three dimension
respectively, for configurationi. These functions each hav
range[0,1]. Furthermore, recalling that the 3-D model in
present form is valid only forφW = π/2, we will assume this
Fig. 5. Free energies calculated by the 3-D model of each configur
whenD = h = 100 µm. (A)V/Vc = 10−3 and (B)V/Vc = 0.5. For both
plots, φW = π/2, and the terminating points of some of the curves in
cate the range over which a given configuration can satisfy its geom
constraints imposed by the cavity dimensions.

value for the 2-D model as well.Fig. 6 plots these normal
ized functions for corner, wall, and base configurations.
additional edge configurationsavailable in the 3-D model ar
omitted from the figure for clarity. For every configuratio
the values for the 3-D model differ from those of the 2
model by no more than 15%. Therefore, we may have co
dence that the 2-D model is sufficient for giving qualitative
meaningful insights and predictions.

3.2. Application

Stability diagrams like those inFig. 4 can predict the
equilibrium morphology of voids in a given system, and the
also can address the more practical question of how the
stitutive variables must be changed to reduce the stabilit
a trapped void. A striking prediction fromFig. 4A is that
very small voids are stable only when the liquid perfec
wets both surfaces. If the practical objective is to elimin
all voids, regardless of their size, then either work mus
supplied or the liquid and/or solids must be modified to p
mote perfect wetting. In many practical systems involv
combinations of organic and metallic surfaces, perfect w
ting may be a difficult task because these solid/vapor
faces often have low surface energy densities and there
are difficult to wet.

When it is not feasible to eliminate the possibility of vo
formation, it is natural to ask (1) how much work must
performed to free a void, and (2) whether there are o
methods of introducing the liquid, instead of rapid imm
sion, that are less likely to form a void in the first place. T
first question will be addressed here; the latter questio
outside the scope of the paper.
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Fig. 6. Normalized free energiesα = Γ/Γfree for various configurations
predicted by the restricted 3-D model (solid curves) and by the 2-D m
(dashed curves) for voids withV/Vc = 10−3.

By examining results like those inFig. 5, we may calcu-
late the work required to liberate a void of a given configu
tion. As mentioned earlier, a free void cannot be thermo
namically favored under these conditions. However, asFig. 5
shows, any reduction in the contact angle between the li
and the walls (or, in fact, the base) will reduce the work
quired to free a void. Noting the difference in vertical sc
betweenFigs. 5A and 5B, the plots also confirm the intu
itive notion that more work is required to liberate a void
its volume increases.

Work added to the system allows it to sample higher
energy states and therefore increases the likelihood of f
ing a free void. Once formed, a free void is unstable tow
rising to the top of the liquid under buoyancy forces, but t
will occur only if a path is available for the void to rise. Ot
erwise, the free void is more likely to reform in a trapp
configuration of lower free energy.

We close this section with a few comments on the appl
bility of the model to real systems. Obviously, during t
formation of a void, the system will often be far from eq
librium and hydrodynamic factors will play an importa
role in determining the initial configuration. More impo
tantly, the initial configuration may be metastable relative
the configuration indicated in the diagram for the appro
ate values ofφW andφB. As an example,Fig. 4D indicates
that, for void volumes that are large relative to the cavity v
ume, a liberated void is the only stable configuration if b
φW andφB are sufficiently small. However, it may be like
for hydrodynamic reasons that a span configuration wo
form initially, making a bubble that spans the opening of
cavity. The span configuration has higher free energy th
free void when both wetting angles are small. But in the s
configuration, the meniscus capping the cavity could ad
a local equilibrium shape, and transporting liquid to the b
surface to liberate the void would undoubtedly require a s
ply of work in some form. Therefore, as with the applicat
of any equilibrium analysis, one must be wary of metasta
states.

We also may use this model to infer the behavior of vo
at other types of rough surfaces. First, it is more comm
in practical situations for the surface to be more che
cally homogeneous than is assumed by this model. Sim
settingφW = φB will make the analysis here applicable
systems such as an embossed metal or the inside of
ringe.

The present model also may be extended to surf
for which the “base” and “wall” are not mutually orthog
nal. For such systems, the free energies of the wall, b
and free configurations at equilibrium must be basically
changed by departures from orthogonality. The geometri
limits of stability will be different, but even these chang
should be small when the deviation from orthogonality is
not too severe. On the other hand, the corner configura
should become increasingly less stable as the interior a
θ , between the wall and base becomes more oblique. In
limiting case where theθ → π , i.e., the wall and base a
coplanar, it is not possible for the liquid–gas surface to m
both types of surfaces while retaining constant mean cu
ture unlessφW = φB. Thus equilibrium is impossible and th
void will spontaneously migrate to the surface for which
contact angle is greater. Based on these consideration
stability of a void is expected to be influenced increasin
by the least wetting surface asθ becomes more oblique. Fo
the same reasons, the corner configuration should be
increasingly favorable asθ becomes more acute.

4. Conclusions

A relatively simple 2-D model has been developed
understand the thermodynamic stability of voids trapped a
liquid–solid surfaces. It is important to note that this p
per does not address mechanisms of void formation, w
undoubtedly involve complex hydrodynamic factors at
liquid–solid interface. Also, the model does not address
kinetics of void liberation, which will be dependent on fa
tors such as the rheological properties of the liquid and
temperature. An understanding of the mechanisms bo
void formation and of void removal are necessary to pre
the likelihood and density of void-like defects and for p
scribing detailed methods by which voids can be remo
Nevertheless, the kind of analysis presented here can pr
useful insights into the energetics of the problem and
suggest promising directions for making further progres
the study of such systems.
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Fig. 7. 2-D geometry for a base configuration used in deriving the area
Aij of the various interfaces and the radius,R, as a function of volume.

Appendix A. Example derivations

The functions inTables 1–4were derived using simpl
mensuration formulas for circles in 2-D or spheres in 3
The mensuration formulas can be derived easily or foun
reference books (for example, see Ref.[9]). As an example
of the procedure, the results for the functionsAij (R) and
R(V ) are derived for the 2-D base configuration.

In the base configuration, the area of the interface
tween the void and the wall surface,AWG, is zero by def-
inition. The area of the interface between the void, hav
radiusR, and the base surface,ABG, is twice the length of
the lower leg of the triangle shown inFig. 7:

(A.1)ABG = 2R sinφB.

The area of the interface between the void (radiusR) and
the liquid,ALG, is the difference between the perimeter
the circle and the arc length of the imaginary cap that
below the base (seeFig. 7):

(A.2)ALG = 2πR − 2RφB.

The volume of a void of radiusR in the base configuratio
is the difference between the volume of a circle of radiuR

and the volume of the imaginary cap that lies below the b
(seeFig. 7):

(A.3)V (R) = πR2 − R2(π + cosφB sinφB − φB).

Solving forR produces

(A.4)R = R̃(V ) =
√

V

π + cosφB sinφB − φB
.

Appendix B. Multiple voids

We wish to determine conditions for which, given a fix
gas volume, a multiple number of smaller voids may h
lower free energy than a single void in at least one of
configurations shown inFig. 3.

Let there beN voids, all having the same configuratio3

but arbitrary volumes, and letv(R) be the fraction of the tota

3 The span configuration is not considered because there can only b
void of that type.
volumeV occupied by any one of these voids having liqu
gas interface radiusR. Furthermore, letρ(v) be the numbe
of voids having volumes betweenvV and(v + dv)V , such
that

(B.1)

1∫
0

ρ(v) dv = N.

The radius of the liquid–gas interface for any void hav
volumevV is

(B.2)R(v) = v1/dR

and the interfaces have areas following the form

(B.3)Apq(v) = v1−1/dApq,1,

whereApq(v) is the area of the interface between phasep

andq for a void with volumevV andApq,1 is the analogous
quantity for a single void of the same configuration hav
the same total volume as theN -void system. Therefore, th
total area of each type of interface bounding the voids in
N -void system is

(B.4)Apq,1

1∫
0

ρ(v)v1−1/d dv = Apq,1N〈v1−1/d 〉,

where〈v1−1/d 〉 is the arithmetic mean value ofv1−1/d . This
relation holds for the area ofall the types of interface, so

(B.5)
Γ tot

Γ
= N〈v1−1/d 〉.

Now, because〈v〉 ≡ 1/N andv < 1, we have

(B.6)〈v1−1/d 〉 >
1

N
(N > 1).

Substituting intoEq. (B.5)gives

(B.7)
Γ tot

Γ
> 1.

If φW � π/2 andφB � π/2, then these results indicate th
Γ of anN -void system having a single type of configurati
exceeds that of a single void with the same configuration
total volume. Furthermore, for a wall, base, or free confi
ration,regardless of the values ofφW andφB, the area of the
liquid–gas interface at constant volume increases with n
ber of voids. Therefore, the free energy for all of these th
configurations is minimized for a single void. However, t
situation is more complicated for the corner configurat
if φW + φB > 3π/2, because all three types of interfa
are present andΓ decreases with increasingABG (because
cosφB < 0) andAWG (because cosφW < 0).

For simplicity in analyzing the corner configuration wh
φW + φB > 3π/2, we assume that allN voids have the
same volume.4 Substituting the 2-D results fromTable 1into

4 Actually N = 1 or 2 for the corner configuration because there are o
two corners available in the model. Nevertheless, it seems desirable to
the arguments as general as possible.
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Eq. (5)and differentiating with respect toN gives

dΓ

dN
= ∂Γ

∂N
+ ∂Γ

∂R

∂R

∂N

(B.8)

= ±
[

V

2N

(
3π

2
+ 2 cosφW cosφB + cosφB sinφB

+ cosφW sinφW − φW − φB

)]1/2

,

where the expression forR from Table 2has been subst
tuted into the final result. The negative root applies onl
the center of curvature of the interface is outside the v
(φB +φW > 3π/2). Therefore,Eq. (B.8)shows that, neglect
ing other geometric constraints, the free energy of the
configuration is actually less than that for the C configu
tion only if φB + φW > 3π/2. Note that ifφB + φW = 3π/2,
then the liquid–gas interface is flat, the collection of ter
in parentheses inEq. (B.8)sums to zero, and therefore the
and 2C configurations have the same free energy. Fina
also can be shown, using the same principles as in pre
ing paragraphs, that the 2C configuration has minimum
energy when both voids have the same volume.

So far, we have not addressed the case for which, i
N -void system, the voids adopt different configurations.
any void in anN -void system, if not already in the stab
configuration for its values ofφW andφB, can only lower its
free energy by isometrically transforming to the stable c
figuration. This means that a system ofN voids in different
configurations has higherfree energy than the sameN voids
all in the stable configuration. Therefore, the configurati
considered in this paper (seeFig. 3) are the only ones eligi
ble to have the minimum free energy.

Appendix C. Geometric constraints on 2-D voids

We catalogue here the conditions for which a 2-D void
a given configuration is geometrically allowable. If one
more of the conditions for a particular configuration is v
lated, then that configuration is disallowed even if it wo
have the minimum free energy.

C.1. Corner (C)

(C.1)R <
D

1+ cosφW
(φB � π/2),

(C.2)R <
D

sinφB + cosφW
(φB < π/2),

(C.3)φB + π

2
> φW,

(C.4)φW + π

2
> φB.
-

If either of the first two constraints is not met, then the v
is so large that only a span configuration is geometric
possible. If either the third or fourth condition is not m
then no portion of a circle can simultaneously meet the w
and base at the required contact angles.

C.2. Void at each corner (2C)

(C.5)2R <
D

1+ cosφW
(φB � π/2),

(C.6)2R <
D

sinφB + cosφW
(φB < π/2),

(C.7)φB + π

2
> φW,

(C.8)φW + π

2
> φB.

C.3. Wall (W)

(C.9)2R sinφW � h (φW � π/2),

(C.10)R(1+ sinφW) < h (φW < π/2),

(C.11)R(1+ cosφW) < D.

C.4. Base (B)

(C.12)2R < D (φB < π/2),

(C.13)2R sinφB < D (φB � π/2).

C.5. Span (S)

(C.14)hp > 0 (φW � π/2),

(C.15)hp + D

2 cosφW
(1− sinφW) > 0 (φW > π/2),

wherehp is given inTable 2.
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